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Abstract. It has been argued that much of evolution takes place in
the absence of fitness gradients. Such periods of evolution can be anal-
ysed by examining the mutational network formed by sequences of equal
fitness, that is the neutral network. It has been demonstrated that, in
large populations under a high mutation rate, the population distribu-
tion over the neutral network and average mutational robustness are
given by the principle eigenvector and eigenvalue, respectively, of the
network’s adjacency matrix. However, little progress has been made to-
wards understanding the manner in which the topology of the neutral
network influences the resulting population distribution and robustness.
In this work, we build on recent results from spectral graph theory and
utilize numerical methods to demonstrate that there exist two regimes
of behaviour: convergence on hubs and diffusion over the network. We
also derive approximations for the population’s behaviour under these
regimes. This challenges the widespread assumption that neutral evolu-
tion always leads to exploration of the neutral network and elucidates
the conditions which result in the evolution of robust organisms.

1 Introduction

When evolution reaches fitness plateaus, the evolutionary dynamics are gov-
erned by the topology of the neutral network [36]. In monomorphic populations,
where the population size and mutation rate are low, the population performs
a random walk on this network [38]. Conversely, in polymorphic populations, at
equilibrium, the distribution of the population on the neutral network is given
by the principle eigenvector of the network’s adjacency matrix [36]. However,
there is very little work examining the manner in which the topology of the
neutral network influences this population distribution. This paper investigates
polymorphic evolution on neutral networks by analyzing the influence of network
topology on the principle eigenvector of the neutral network.

When organisms undergo natural evolution, mutation does not act directly on
their form, but rather on the genetic code. Similarly, in Evolutionary Computing
(EC), a representation of the problem, upon which mutation can occur, must



be identified. The problem of choosing such a representation, the representation
problem, has been identified as a critical issue within EC [10], as well as artificial
intelligence in general [24].

This necessitates a mapping between the genetic code or representation
(genotype) and the organism or resulting problem solution (pheontype): the
G→P map. the developmental process which translates genetic information into
various biological organisms is not well understood [29]. Yet, it has become clear
that this mapping is neither one-to-one nor linear [13]. In many organisms and
Ribonucleic Acid (RNA) folding [9], it has been found that genetic change result-
ing from mutation is not proportional to phenotypic change [27,29,37]. Moreover,
the G→P map is highly degenerate, that is many genotypes might encode for
an identical phenotype [29].

There exists great variation in the mappings between representations and
candidate solutions used in EC. On the one hand, in genetic algorithms, the
relationship between representation and solution is often somewhat straightfor-
ward [10]. However, within the field of generative and developmental systems [7],
many highly complicated mappings between representations and evolved forms
have been proposed. Such mappings have been applied to a variety of tasks, in-
cluding robot morphologies and organisms in artificial life studies [33]. Although
the properties of individual mappings depend on their definition, some have been
shown to be highly degenerate.

Degeneracy introduces the possibility that, when mutated, a genotype will
still map to the same phenotype. This implies that the mutation has no effect
on fitness and so can be labeled as neutral. Kimura [17], along with King and
Jukes [18], brought the importance of neutral mutations to the attention of the
scientific community through what has come to be known as the neutral theory
of molecular evolution. This posits that the majority of evolutionary change is
the result of the fixation of neutral mutations, as opposed to mutations which
confer a selective advantage. Although the level of importance that such genetic
drift has on evolution has been controversial [22], it is beyond doubt that certain
mutations of certain organisms and structures are selectively neutral [4, 26,39].

If the genetic code is a string of characters, as opposed to, say, a vector of real
numbers, then one can construct networks out of genotypes coding for a given
phenotype [36]. Here the vertices represent genotypes, and an edge connects
two vertices if there exists a point mutation between their associated genotypes,
that is their genetic codes are a hamming distance of one apart. Such neutral
networks have been studied extensively [1,4,26,36] and it has been shown that,
under certain assumptions, these networks permeate sequence space and that
any common phenotype can be reached by traveling along them [31].

An important associated concept is that of mutational robustness [34]. This
refers to the proportion of mutations which leave the phenotype unchanged.
The greater the mutational robustness of the genotypes, the larger their neutral
networks will be [38]. This has an impact on the evolvability of these genotypes, as
they can access a greater variety of phenotypes through neutral drift. Moreover,



populations can evolve so as to occupy the most connected parts of the network
[36], thus increasing their average robustness.

If one assumes that evolution has reached a fitness plateau, that is that the
fitness of all genotypes off the network is lower than that of those on it, then
two behavioural regimes emerge. Given a population size M and a mutation
rate µ, then if Mµ � 1 the population is monomorphic [3]. Mutations either
fix or disappear, that is they either become present in the entire population
or none of it. Thus, the entire population is concentrated on a single node of
the neutral network. Throughout the neutral epoch the population performs a
random walk over the network. On the other hand, if Mµ � 1, the population
is polymorphic and spreads out over the neutral network [38]. Populations of
self-replicating RNA, viruses and bacteria are polymorphic , whereas larger or-
ganisms are monomorphic [38]. Given the simple dynamics of the monomorphic
case, this work focuses exclusively on polymorphic populations.

In their seminal work, van Nimwegen et. al. [36] showed that the equilibrium
distribution of a polymorphic population is given by the principle eigenvector
of the adjacency matrix of the neutral network and that the average robustness
of the population is given by the principle eigenvalue. Despite the insight of
this result, little work has been conducted towards determining the manner in
which the topology of the neutral network influences the resulting population
distribution over the network.

Reeves et. al. [30] were able to derive an upper limit to the principle eigenvalue
in terms of the size of the network, by utilising the fact that neutral networks
are subgraphs of a hypercube graph. This work, however, said nothing about
the effect of other topological features and, moreover, has no implications for
the principle eigenvector. Noirel and Simonson [26] were able to show, in simu-
lation, that degree assortativity and the existence of hubs increased the average
robustness of populations.

The principle eigenvectors and eigenvalues of graphs are of great importance
to a variety of problems [32], principally synchronization phenomena and the
spread of epidemics. Since the publication of van Nimwegen et. al.’s seminal
paper, there has been significant progress towards describing the behaviour of
these two quantities in terms of network topology [5, 14, 19, 28]. To the best of
the authors’ knowledge, there has been no work published which examines the
implications of these results on the neutral evolution of polymorphic populations.

In this paper, we build on the above-mentioned results, both analytically
and numerically, in order to elucidate the effect of neutral network topology on
the equilibrium distribution and average robustness of polymorphic populations
evolving on neutral networks. The principle finding is that there are two distinct
behavioural regimes. If the network contains a hub of sufficiently high degree,
then the population localizes on this hub. That is the vast majority of the pop-
ulation is found on the hub node and its neighbours. The neutral networks of
proteins have been found to have high degree hubs and simulations of neutral
evolution have shown that populations converge on these hubs [4, 26, 39]. How-
ever, these models also incorporated the stability of the proteins, which acts as



a type of fitness. In most instances, the stability of the sequences correlates with
their neutral degree in what is known as a superfunnel. Here we show, generally,
that this behaviour occurs in the absence of a fitness advantage conferred by
hubs so long as the hubs’ degree is sufficiently large. Moreover, we demonstrate
that, in large networks, the extent of the localization can be much greater than
in the smaller networks analyzed in these studies.

This mode of behaviour casts the discussion on the relationship between
robustness and evolvability in a new light. Many arguments are based on the
assumption that populations spread out over the neutral network. While this is
true for monomorphic populations and polymorphic populations evolving on net-
works that lack high degree hubs, we demonstrate that polymorphic populations
evolving on networks with hubs cluster within a very small region of the network.
Specifically, there have been two main arguments for how robustness facilitates
evolvability. In the first, it is proposed that, when polymporphic populations
spread out over the network, the population gains cryptic variation [20]. This
variation allows the population to better adapt to changes in the environment.
In the second, it is argued that robust genotypes create larger neutral networks.
This creates more “stepping off points”, and so the population can access more
phenotypic variation [37]. Neither of these arguments hold if the population is
tightly clustered around a hub. Furthermore, as demonstrated below, when the
population clusters around a hub, its average robustness can be substantially
higher than the average degree of the network. Thus, this is a case in which
robustness and evolvability have a firmly antagonistic relationship.

The second behavioural regime encountered by polymorphic populations
is diffusion over the network. We show that such populations are distributed
roughly evenly over the network and we derive an expression for the average
mutational robustness of the population. This expression shows that the popu-
lation’s robustness is largely determined by two biases: the edge sampling bias
caused by mutations and the degree assortativity of the network. Although ro-
bustness itself represents a type of mutational bias, one can question the exis-
tence and role of higher order mutational biases, that is biases towards biases.
Indeed, mutations on the neutral network, that is mutations that lead to viable
genotypes, are biased towards higher degree nodes due to the friendship para-
dox [12]. This effect is named after the phenomenon where, in social networks,
the average number of friends of friends is higher than the average number of
friends. Moreover, this effect is present in all networks, where the average num-
ber of neighbors of neighbors is higher than the average number of neighbors of
nodes in the network. The cause of this paradox is that sampling the degrees
of neighbors is equivalent to sampling the degrees of nodes at the end of edges,
which is biased towards higher degree nodes. The relationship between these two
averages can be expressed as: [12]

λ̂ = 〈k〉+
σ2
n

〈k〉
=

〈
k2
〉

〈k〉
(1)



where 〈k〉 is the average degree (robustness) of genotypes on the neutral network,
σ2
n is the variance of these degrees and λ̂ is the average degree of single mutation

neighbors. An implication of this result, as demonstrated by van Nimwegen et.
al. [36], is that random walks on neutral networks result in an average neutrality
equal to λ̂.

Intuitively, we would not expect populations to converge on an average level
of robustness substantially lower than what a random walk provides. Although
robust genotypes have a selective advantage in that they produce more viable
offspring, if these offspring themselves are not robust it is difficult to see how
the population could converge on this lineage. Therefore, the selection of robust-
ness is facilitated by the existence of highly robust nodes whose offspring are
also highly robust. This sort of higher order mutational bias is provided by net-
work assortativity, that is, correlation in the degrees of the nodes at the end of
edges [23]. By deriving an expression for the average population robustness, we
show that it is equal to the mutational sampling bias and rises above or below
this figure depending on whether the network has positive or negative degree
assortativity.

2 Localization on Hubs

In the context of graph spectra, localization refers to the phenomenon whereby
the normalisation weight of an eigenvector (

∑
f2i (λ), where λ is the eigenvalue

and f(λ) is the eigenvector) is concentrated on a small number of nodes that
does not scale with the size of the network [28]. Some authors have suggested
using the inverse participation ratio Y (λ).

Y (λ) =

N∑
i=1

f4i (λ) (2)

as a quantitative measure of localization where, in this case, f(λ) is the nor-
malised eigenvector. If, in the limit N →∞, Y (λ) ∼ 1 then the state is localized.
On the other hand, if Y (λ)→ 0 then the state is delocalized. There are a number
of results relating aspects of network topology to localization. Chung et. al. [5]
showed that the principle eigenvalue, for a random graph model characterised
by a given degree distribution, is given by.

λ1 =

{
λ̂, λ̂ >

√
kmax logN√

kmax,
√
kmax > λ̂ log2N

(3)

where λ̂ =
〈
k2
〉
/ 〈k〉 (〈k〉 being the average degree and

〈
k2
〉
being the mean

of the squares of the degrees). λ1 = λ̂ corresponds to the delocalized state and
λ1 =

√
kmax corresponds to the localized state.

Goltsev et. al. [14] showed that, for unassortative scale-free networks with
degree distribution P (k) ∼ k−γ , the principle eigenstate is localized for γ > 5

2



and delocalized otherwise. The principle eigenvalue is given by
√
kmax and λ̂ for

the localized and delocalized states, respectively.
Martin et. al. [19] demonstrated that for a hub connected to an Erdős-Renyi

network, localization occurs when
√
kmax > 〈q〉 where 〈q〉 is the average degree

of the original Erdős-Renyi network, without the hub. Furthermore, they showed
that the eigenvector component on the hub, fh is given by.

fh =

√
kmax − 2 〈q〉
2kmax − 2 〈q〉

(4)

Where the average of the components neighbouring the hub, 〈fn〉 is given by.

〈fo〉 =
fh√

kmax − 〈q〉
(5)

and the average of all non-hub components 〈fj〉 is.

〈fj〉 =
1

N − 1

fh√
kmax − 〈q〉

(6)

Finally, Pastor-Satorras and Castellano [28] have shown that a form of less
severe localization can occur on scale-free networks where γ < 5

2 .
This then begs the question of whether the neutral networks encountered

in natural and artificial evolution meet the topological criteria for localization.
Given the wide variety of possible fitness landscapes, it is fair to assume that at
least some of them will contain neutral networks with localized principle eigen-
vectors. However, there is a dearth of mapped-out neutral networks. The authors
know of none within EC. Fortunately, some neutral networks of protein [4,26,39]
and RNA folding [2] have been mapped. RNA neutral networks would seem to
be fairly homogeneous, with narrow degree distributions. However, the neutral
networks induced by protein folding contain high-degree hubs. This makes them
candidates for localization behaviour.

Moreover, it was reported that localization-like behaviour was observed when
evolution was simulated on these neutral networks. However, those simulations
incorporated the stability of the proteins, which acts as a type of fitness. The
stability of the proteins was strongly correlated with the robustness, that is
the highest degree node also had the greatest stability. This has been labeled
as the superfunnel paradigm [26] and it contains the further assumption that
robustness and, by implication, the stability of the sequences decreases with
increasing distance from the hub, or ‘prototype’ sequence. This can be visualized
as a funnel, with the bottom placed over the prototype sequence.

The above results concerning the localization of eigenvectors demonstrate
that the localization of populations can occur in the absence of the fitness ad-
vantage conferred by stability and the anticorrelation of robustness and distance
from the prototype sequence. The crucial feature is high degree hubs. Although
none of the networks reported on in these studies satisfy the stringent conditions



of Chung et. al. [5], some of those analyzed by Bornberg-Bauer [4] easily satisfy
the criteria of Martin et. al. [19] that

√
kmax > 〈q〉. However, it is unclear how

close the topology of the observed networks is to the model of Martin et. al. [19].
Although we do not have access to the full topology of all of the networks studied
by these authors, inspection of those for which they presented diagrams leads
us to believe that they do conform to this model. Moreover, it is worth bearing
in mind that the model of Martin et. al. [19] is considering hubs connected to a
maximally random network.

2.1 Connected Hubs

The topology of the neutral network of the haemagglutinin protein of the in-
fluenza A virus (H3N2) as explored byWagner [39] appears to conform to a some-
what different topology. Although it easily satisfies the criteria that

√
kmax > 〈q〉,

it would seem to be composed of hubs attached to one another.
In order to shed light on this type of topology, we studied the localization

behaviour of a model of random networks, whereby hubs (star networks) were
connected by non-preferential attachment. Specifically, a high degree hub of de-
gree m was instantiated by connecting m nodes to a hub node. Further to this,
30 lower degree hubs, of degree n = 5 were created. All the hubs were then
connected through non-preferential attachment, beginning with the maximum
degree hub. Specifically, one low degree hub was connected to the high degree
hub and then each subsequent low degree hub was connected to a randomly cho-
sen hub in this connected graph. Figure 1 shows that the localization transition
occurs at around m = 35.

3 Delocalized Regime

In the delocalized regime, progress on approximating the population’s distribu-
tion and robustness can be made by assuming that, at equilibrium, for every
node in the network, the average population concentration on nodes at a given
distance l is equal. That is we utilise a mean-field approximation at a given
distance l. This average concentration is the uniform concentration, that is the
population size divided by the number of nodes. This is equivalent to assuming
that the correlation length for the degrees is low. It has been found that, for most
real-world networks, the correlation length is low [21]. Using this assumption we
can approximate the proportion of the population which mutates onto a given
node, and hence the population distribution and average robustness.

For the cases l = 2 and l = 3 we make use of the annealed network approxi-
mation [8], whereby all nodes with a given degree k are approximated as having
the same nearest neighbour degree distribution, which is the aggregate distri-
bution over the neighbours of all nodes with degree k. This has the implication
that all nodes of degree k have the same average nearest neighbours degree, that
is k̄nn(i) = k̄nn(ki), where i is a node’s index and ki the associated degree. We



Fig. 1. The proportion of the population found on the largest hub node and its neigh-
bours for our model of connected-hub networks. 30 star networks of degree 5 and a
larger star whose degree is plotted on the x axis were connected via non-preferential
attachment. The shaded region shows the standard deviation.

also use the approximation:

k̄nn (k) ≈ λ̂+
(
k − λ̂

)
r (7)

Where k̄nn(k) is the average nearest-neighbour degree of nodes of degree k,
λ̂ =

〈
k2
〉
/ 〈k〉 (〈k〉 being the average degree

〈
k2
〉
being the average of the squares

of the degrees) and r is the assortativity coefficient (the Pearson correlation
between the degrees at either end of an edge) [23]. This approximation is derived
by considering that r is the root of the coefficient of determination of the linear
regression between the degrees of the nodes at either end of an edge.

We introduce the notation λl1 to denote the approximation of the principle
eigenvalue (population average robustness) based on the assumption of equal
average distribution at distance l. Similarly, we use fi

(
λl1
)
to denote the ith

component of the principle eigenvector (the proportion of the population having
the genotype represented by the ith node), based on the assumption of equal
average distribution at distance l.

Some of the below reasoning is based on the particulars of the model of
van Nimwegen et. al. [36]. In this model, the population of constant size M
resides on a neutral network of size N . The total number of neighbours, neutral
and non-neutral, that a given genotype can have is given by U , this limit is
determined by the length of the genetic code and the size of the alphabet. Each
generation, M genotypes are selected with replacement from the population.
These individuals then undergo mutation. With probability ki/U the individual



remains on the network, where ki is the degree of the node representing the
individual’s genotype. If the individual stays on the network, it moves to one of
its neighbouring nodes, chosen at random. If it mutates off the network then it
is ineligible for selection in the subsequent generation.

3.1 Zero-hop Case

The simplest case is that we assume that the average population concentration
at a distance zero from each node is equal, that is we assume that the population
is uniformly distributed. The average robustness of the population is therefore,
trivially, the average degree. Thus, we have:

fi
(
λ01
)

=
1

N
(8)

λ01 = 〈k〉 (9)
Where 〈k〉 is the average degree and N is the size of the network.

3.2 One-hop Case

The next case assumes that, at equilibrium, the average population concentration
of the neighbours of each node are equal. Therefore, each generation, an average
of kiM/NU individuals mutate onto node i. Normalizing, we arrive at

fi
(
λ11
)

=
ki

N 〈k〉
(10)

Multiplying by the robustness (ki) and summing over all the nodes we arrive at
the average robustness of:

λ11 =

〈
k2
〉

〈k〉
= λ̂ (11)

3.3 Two-hop Case

If we assume an average uniform population concentration two hops from each
node, then, each generation, by the annealed network approximation, the nodes
neighbouring node i will receive, on average, k̄nn (ki)M/NU mutants. This im-
plies that node i will receive kik̄nn (ki)M/NU2 individuals. Substituting in equa-
tion (7) and normalizing we arrive at

fi
(
λ21
)

=
1

N 〈k2〉

(
kiλ̂+ ki

(
ki − λ̂

)
r
)

(12)

Multiplying through by the node’s robustness (ki) and summing over the nodes,
we arrive at

λ21 = λ̂+
rσ2
e

λ̂
(13)

Where σ2
e =

〈
k3
〉
/ 〈k〉 −

〈
k2
〉2
/ 〈k〉2 is the variance of the node’s degrees when

sampled by following edges. (13) is equivalent to the approximation derived by
Goltsev et. al. [14] through the use of a power iteration.



3.4 Three-hop Case

Our final approximation is based on the assumption that, from any given node,
the average population density at nodes three hops away is equal. We consider
the node i′, a neighbour of i. Each generation, this node will receive an average
of ki′ k̄nn (ki′)M/NU2 mutants from its neighbours. We then average this over
all neighbours i′ of node i, that is we want to find

I =
M

NU2

〈
ki′ λ̂+ k2i′r − ki′ λ̂r

〉
i′

(14)

Using the fact that
〈
k2i′
〉
i′
≈ σ2

e + 〈ki′〉2i′ , where the equality is approximate
as σ2

e is the global variance and not specific to the neighbours of nodes of degree
ki′ , we can arrive at

I ≈ M

NU2

(
λ̂2 + λ̂

(
ki − λ̂

)
r + λ̂

(
ki − λ̂

)
r2 +

(
ki − λ̂

)2
r3 + σ2

er

)
(15)

The number of mutants that a node i receives is kiI/U . When we come to
normalise this, we find that the total population is

P ≈ M

U3

(
〈k〉 λ̂2 +

〈
k
(
k − λ̂

)2〉
r3 + 〈k〉 σ̂2

er

)
(16)

The second two terms in the parentheses are much smaller than the first and so,
for mathematical expediency, we ignore them. This results in

fi
(
λ31
)
≈ 1

N 〈k2〉

kiλ̂+ ki

(
ki − λ̂

)
r + ki

(
ki − λ̂

)
r2 +

ki

(
ki − λ̂

)2
r3

λ̂
+
kiσ

2
er

λ̂


(17)

As previously, we multiply by each node’s robustness (ki) and sum over all
nodes to arrive at the approximation for the eigenvalue (population average
robustness).

λ31 ≈ λ̂+
2rσ2

e

λ̂
+
r2σ2

e

λ̂
+
r3
(〈
k4
〉
− 2λ̂

〈
k3
〉

+ λ̂2
〈
k2
〉)

〈k2〉 λ̂
(18)

3.5 Numerical Verification

Random networks conforming to the Erdős-Renyi model [11] were created in
order to measure the accuracy of the approximations. We needed to test these
approximations for various values of the assortativity coefficient (r), however,
the expected value of r for Erdős-Renyi networks is 0 [23]. In order to both
increase and decrease the assortativity, the rewiring algorithm of van Miegham
et. al. [35], was used. This algorithm operates by iteratively picking two edges at



random and observing the degrees of the four nodes at their endpoints. If the goal
is to increase assortativity, the two nodes with the highest degrees are connected
by an edge and, likewise, the lowest degree nodes are also connected. Moreover,
the original two edges are removed from the network. Similarly, if the goal is to
decrease assortativity, the maximum degree node is connected to the minimum
degree node and the remaining two nodes are also connected. Rewiring does not
take place if the desired connectivity arrangement between the four nodes was
already present. This iterative process is repeated until the desired value of r is
achieved.

We chose 15 values of r on which to test: those between -0.7 and 0.7, inclusive,
at intervals of 0.1 . 100 networks, each with N = 1000 nodes and average degree
of 〈k〉 = 10 were instantiated for each of these values. Figure 3.5 shows the
relative error of the derived approximations. It shows that, for positive values of
r, the approximation λ31 is more accurate than that of Goltsev et. al. [14] (which
is equivalent to λ21).

Fig. 2. The relative error of the approximations of the principle eigenvalue measured
on Erdős-Renyi networks which have been subjected to a rewiring algorithm [35] in
order to display various values of degree assortativity. The shaded region shows the
standard deviation.

4 Discussion

In this work, we set out to incorporate and build upon recent results concerning
the behaviour of the principle eigenvectors, and associated eigenvalues, of the



adjacency matrices of networks in the context of the study of the dynamics of
polymorphic populations evolving on neutral networks.

Much of the discussion surrounding neutral evolution has functioned on the
assumption that there is only one regime of polymorphic neutral evolution. In
this regime, the population explores much of the network and, in the words of
van Nimwegen et. al. [36] “seeks out the most connected areas of the neutral
network”. This intuition is echoed by many authors, for instance “the population
will tend to congregate in regions of a neutral network that have more robust
genotypes” [38] and the population will “evolve toward regions denser in neutral
genotypes” [1]. Moreover, this is plausible, given that the principle eigenvector
(which specifies the population’s distribution) is used as a measure of centrality:
the eigenvector centrality [19].

Our most salient finding is that there are actually two distinct behavioural
regimes. Moreover, each of these regimes differ from the above intuition in im-
portant ways.

The first regime involves the localization of the population onto a hub and its
neighbouring nodes. Here the average mutational robustness of the population
is approximated by the square root of the degree of the hub and the number of
nodes upon which the bulk of the population resides does not scale with the size
of the network.

This has important ramifications for the understanding of neutral evolution.
Firstly, under localization, the eigenvector centrality ceases to be a useful mea-
sure [19]. This can be illuminated by considering a star network connected to an
Erdős-Renyi [11] network by a single edge. Following the arguments outlined in
section 2, so long as the degree d of the star’s hub is greater than the average
degree of the original network 〈q〉, the population will localize on the star. As
a star network has one more edge than vertices (in this case two more, due to
the connection to the Erdős-Renyi network), the average degree of this network
is approximately two. Therefore, so long as the original Erdős-Renyi network
has an average degree greater than two, the majority of the population will be
concentrated on a region of the network with below average degree. It is thus
concentrated on a region which is neither “most connected” nor “denser in neutral
genotypes”.

It is useful to query why our intuition failed in this case. After all, the pop-
ulation’s average robustness (

√
kmax) can be much higher than the network’s

average degree, even though the population is occupying a region of below aver-
age degree. This is due to the fact that such a large proportion of the population
is found on the hub itself. Referring again to section 2, we see that, in the case
of a star connected to an Erdős-Renyi network, in the limit of large d, around
half of the entire population is found on the hub genotype. This concentration
is self-reinforcing, as a substantial proportion of the hub’s mutants will mutate
back onto it, leading to the localization phenomenon [19].

This regime of behaviour has particular relevance to arguments concerning
the relationship between robustness and evolvability. These arguments are pred-
icated on the fact that robust genotypes form larger neutral networks [38]. This



then allows for the population to accumulate more cryptic variation as it spreads
over the network [20], allowing it to better adapt to changes in its environment.
Moreover, it creates more “stepping off points” for the population, allowing it to
access more phenotypic variation [37]. However, these arguments fail to take into
account the proportion of the network occupied by the population. By definition,
localization occurs when the normalization weight of the principle eigenvector
is concentrated at a number of nodes that does not scale with the size of the
network [28]. Therefore, the cryptic variation in the population and the amount
of phenotypic variation accessible to it does not scale with the robustness of the
genotypes of which the network is composed. Furthermore, as the population’s
average robustness is determined solely by the degree of the hub, it is entirely
possible to have populations with extremely high average robustness, and very
low cryptic variation and access to phenotypic variation. The access to pheno-
typic variation is particularly poor in this regime, given that such a large pro-
portion of the population is concentrated on the hub and that the hub has such
a high proportion of neutral neighbours. It is worth noting that these arguments
relating robustness and evolvability are still valid, so long as the robustness of
genotypes is homogeneously distributed, in order to avoid localization.

The delocalized case has more in common with the traditional intuition. A
principle difference, however, is the level to which concentration on regions of
better connected genotypes occurs. Firstly, such a region needs to exist. This
requirement will be met in networks with degree assortativity, however, disas-
sortative mixing will result in genotypes with high robustness mutating to those
with low robustness, thwarting evolution’s attempts at settling on robust nodes.
Specifically, by examining equations (10), (12) and (17) we see that, in unassor-
tative networks, the proportion of the population on a given node scales with
its degree. This implies that, on relatively homogeneous networks, there will be
little difference in the population concentration on various nodes. Furthermore,
as shown in (17), disassortative mixing decreases the number of individuals occu-
pying a node in proportion to both the square and cube of its degree. Although
we do expect to see a certain degree of concentration of the population in more
robust regions of the neutral network in the case that the network exhibits as-
sortative mixing, the severity of this concentration will be relatively mild. Given
that, for networks of reasonably high average degree, λ̂ is substantially larger
than r, the latter terms in equation (17) will only play a significant role when
ki is much larger than λ̂.

We further propose that it is fruitful to think of the delocalized regime of
neutral evolution more in terms of a biased sampling process of the genotypes
on the network, resulting from mutational biases, as opposed to a population
moving between regions of the network. From equations (11), (13) and (18) we
can see that, in the absence of assortativity, the population’s average robustness
is approximated by λ̂. This is exactly the average robustness which we would
expect from performing a random sampling of all possible mutations on the
network, as implied by the friendship paradox [12]. Assortative and disassorative
mixing by degree will increase or decrease the population’s average robustness



above or below this level. Assortativity represents a further mutational bias
towards higher or lower degree nodes, dependent on the degree of the node from
which the mutation originates.

Given that it is suspected that much of evolution occurs on neutral net-
works [22] along with the importance of mutational robustness to the survival
of organisms and its relationship with evolvability, understanding the impact
of the topology of neutral networks on the dynamics of neutral evolution and
the resulting robustness of organisms is of great importance. This work has
provided insight into these issues in the case of polymorphic populations: large
populations evolving at high mutation rate. The directed, neutral, evolution of
bio-molecules [6, 15] along with viruses overcoming immunity through neutral
evolution [25] fall within this category. These results have potential applicabil-
ity to these problems. For instance, the neutral evolution of large libraries of
molecules [16] will be greatly aided by delocalization, whereas a virus’s attempt
to escape immunity might be thwarted if its population localizes on a hub.

5 Conclusion

This paper investigated the manner in which neutral network topology influences
the resulting population distribution and robustness during neutral evolution at
high mutation rates in large populations. In such cases, the population distribu-
tion is given by the principle eigenvector of the adjacency matrix of the neutral
network and, similarly, the average mutational robustness of the individuals in
the population is given by the principle eigenvalue [36]. Hence, we utilized, and
built upon, recent results concerning the behaviour of these values from stud-
ies concerning the spread of epidemics on networks [14] as well as more general
work [19].

It was found that, on homogeneous neutral networks, the population’s be-
haviour could be described in terms of mutational biases. For unassortative neu-
tral networks, it was found that the average mutational robustness was equal
to the sampling bias provided by the friendship paradox [12]. Assortative and
disassortative mixing by degree raised the robustness above or below this value,
respectively. Furthermore, in the process of demonstrating this, we derived a
new approximation for the principle eigenvalue of a network in terms of its as-
sortativity and the moments of its degree distribution.

Conversely, for heterogeneous neutral networks with high degree hubs, it
was found that the population become concentrated on the nodes around the
hub and thus the number of nodes occupied does not scale with the size of the
network. Furthermore, the average robustness of the population is given by the
square root of the network’s maximum degree. These results are particularly
relevant to various arguments concerning the relationship between robustness
and evolvability [20, 37], which assume that the number of nodes occupied by
the population scales with the size of the network.

These results are relevant to the directed evolution of bio-molecules [6, 15],
where they can be used to evolve more robust molecules as well as facilitate the



evolution of greater variety. Moreover, they can also further our understanding
of the factors that allow viruses to escape immunity along neutral networks [25].

Computations were performed using facilities provided by the University of
Cape Town’s ICTS High Performance Computing team: http://hpc.uct.ac.za
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